
STCLang: State Thread Composition as a Foundation for
Monadic Dataflow Parallelism

By Sebastian Ertel, Justus Adam, Norman A. Rink,
Andrés Goens and Jerónimo Castrillón-Mazo

2

mapM f g f g

f g

f g
smap

cores

t

Sequential

Pipeline

Parallel

We want ...

Dataflow Execution

f
𝑠"

g
𝑠#

mapM (\x -> f x >>= g) [..]
Monad Execution

f
𝑠

g
𝑠

Use Case
• FRP
• Data Streaming

Parallelism arises
implicitly from model

1. Tim Harris and Satnam Singh. 2007. Feedback directed implicit parallelism. In Proceedings of the 12th ACM SIGPLAN
international conference on Functional programming (ICFP '07). ACM, New York, NY, USA, 251-264.

Granularity implicit
from state scope1

Parallelism in the presence of State
• Efficient
• Intuitive

• Performance
• Responsiveness

Functions depend on
entire state

Functions depend on
local state only

Monads are a powerful and familiar
abstraction, but inherently sequential

State in Haskell

3

1. Wadler, Philip. "The essence of functional programming." POPL. Vol. 92. No. 37. 1992.
2. Launchbury, John, and Simon L. Peyton Jones. "Lazy functional state threads." ACM SIGPLAN Notices 29.6 (1994): 24-

35.

ST s a StateT s m a

STRef s cArray s b put :: s → StateT s m ()
get :: StateT s m s

Lots of references strewn about Single user defined state

State in Haskell

4

1. Wadler, Philip. "The essence of functional programming." POPL. Vol. 92. No. 37. 1992.
2. Launchbury, John, and Simon L. Peyton Jones. "Lazy functional state threads." ACM SIGPLAN Notices 29.6 (1994): 24-

35.

ST s a StateT s m a

STRef s cArray s b put :: s → StateT s m ()
get :: StateT s m s

Needs Alias Analysis to
disentangle

Opaque

f
𝑠"

Can both be used to implement
State Threads with local state

RealizedTheorized

Lots of references strewn about Single user defined state

Both antithetical to
Parallelism

smap (\x -> f x >>= g) [𝑥%, 𝑥']

Smap (De)Construction

5

f g

f g

[𝑠", 𝑠#]

[𝑥%,

𝑥']

Cheap write-once
channels (IVar)
synchronize state

State source
decoupled from
input (aka. >>=)

Pipeline Parallel Execution arises
implicitly, like in Dataflow

Computations
spawned in

parallel

1. Simon Marlow, Ryan Newton, and Simon Peyton Jones. 2011. A monad for deterministic parallelism. In Proceedings of
the 4th ACM symposium on Haskell (Haskell '11). ACM, New York, NY, USA, 71-82.

Items still
sequential
via >>=

Familiar monadic composition

smap (\x -> f x >>= g) [𝑥%, 𝑥']

Smap (De)Construction

6

f g

f g

[𝑠", 𝑠#]

[𝑥%,

𝑥']

Cheap write-once
channels (IVar)
synchronize state

State source
decoupled from
input (aka. >>=)

Computations
spawned in

parallel

1. Simon Marlow, Ryan Newton, and Simon Peyton Jones. 2011. A monad for deterministic parallelism. In Proceedings of
the 4th ACM symposium on Haskell (Haskell '11). ACM, New York, NY, USA, 71-82.

Items still
sequential
via >>=

Familiar monadic composition

Sequential Guarantees

• Effects happen in element order
• Computation happens in composition (>>=) order

Pipeline Parallel Execution arises
implicitly, like in Dataflow

Sequential Guarantees are
sufficient to express FRP

Functional Reactive Programming

7

Effect-only
node

IO IO IO

Smap over one element at a time

Functional Reactive Programming

8

Effect-only
node

Generator

IO

Chan

IOIO Non-deterministic
merge for ordering

Smap over one element at a time

Functional Reactive Programming

9

Effect-only
node

All events dispatch
to all source nodes

Only matching source
updates its value

Other sources
repeat old value
⇒ No glitches

Using a filter avoids
recompute. Returns last

value instead (using state)

Synchronizes
via state

• Tivial (~50 LOC)

Generator

IO

Chan

IOIO Non-deterministic
merge for ordering

Other Forms for Parallelism

10

Task Parallelism

f

g

Data Parallelism

f

f

Can be done automatically with the
ApplicativeDo GHC Extension1

\x -> f x <*> g x

1. Spawned off

2. Compute this

3. Collect results & apply

Concisely expressed with
the <*> operator

Node Implementation

~(a,s) <- run f

evaluate a

evaluate s
send s

If s unchanged,
virtually free

Being lazy in a allows s
to be sent on first

Works for both read-
only and unused state

Next instance of f
can start before

this point

1. Simon Marlow, Simon Peyton Jones, Edward Kmett, and Andrey Mokhov. 2016. Desugaring Haskell's do-notation into
applicative operations. In Proceedings of the 9th International Symposium on Haskell (Haskell 2016). ACM, New York,
NY, USA, 92-104.

Other Sources for Parallelism

11

Task Parallelism

f

g

Data Parallelism

f

f

Can be done automatically with the
ApplicativeDo GHC Extension1

\x -> f x <*> g x

1. Spawned off

2. Compute this

3. Collect results & apply

Concisely expressed with
the <*> operator

Node Implementation

~(a,s) <- run f

evaluate a

evaluate s
send s

If s unchanged,
virtually free

Being lazy in a allows s
to be sent on first

Works for both read-
only and unused state

Next instance of f
can start before

this point

1. Simon Marlow, Simon Peyton Jones, Edward Kmett, and Andrey Mokhov. 2016. Desugaring Haskell's do-notation into
applicative operations. In Proceedings of the 9th International Symposium on Haskell (Haskell 2016). ACM, New York,
NY, USA, 92-104.

• We formalized the model using category theory
• Yields a formal explanation for the forms of extracted

parallelism

2. Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens, Jeronimo Castrillon.
2019. Category-Theoretic Foundations of "STCLang: State Thread Composition as a
Foundation for Monadic Dataflow Parallelism”. https://arxiv.org/abs/1906.12098

Data Parallelism

12

0

5

10

0 5 10 15 20 25
cores

sp
ee

du
p

f f_write

Same as f but also
writes state

Benchmark executes State
Thread (f or f_write) twice,

as a two stage pipeline

f_write exploits
pipeline

parallelism (~2x)

f additionally exploits
data parallelism
(linear scaling)

Microbenchmarks

13

1. For simplicities sake only includes the more favorable monad-par measurement (par2 in the paper)
2. Marlow, Simon, Ryan Newton, and Simon Peyton Jones. "A monad for deterministic parallelism." ACM SIGPLAN

Notices. Vol. 46. No. 12. ACM, 2011.

Simple Compositions

0

5

10

0 5 10 15 20 25
cores

sp
ee

du
p

par stc

1

Black-Scholes 2

0

5

10

15

0 5 10 15 20 25
cores

sp
ee

du
p

par stc

Benchmarks from [1]

STCLang is implemented
using the monad-par library

Overhead over manual monad-par
implementations is mostly negligible

14

Regular MapReduce

map

smap map

map

collect reduce

Reduce via State and Map

map

smap map

map

collect

reduce

reduce

reduce

MapReduce Benchmark

0

5

10

15

0 5 10 15 20 25
cores

sp
ee

du
p

par stc stc'

Can express multiple
concurrent reduces

sum is very efficient,
(+) is too cheap for

the overhead

Streaming

Data Streaming Benchmark

15
1. Sanket Chintapalli, et al. "Benchmarking streaming computation engines: Storm, flink and spark streaming." 2016 IEEE

international parallel and distributed processing symposium workshops (IPDPSW). IEEE, 2016.

Kafka

Parse Filter Project Join
Time Window
Aggregation

Increment
& Store

Redis
(outside of application)

Timer

smap-FRP Style

Redis
(outside of application)

Kafka

Parse Filter Project Join

Time Window
Aggregation

Increment
& Store

Timer

smap

Hidden Thread
spawn for timer

Explicit synchronization (locks) to
prevent race conditions

The streaming model is incapable
of adequately expressing this task

Model can express dispatch
based on event type Timer Path

Kafka Path
Expresses task fully and concisely

Data Streaming Benchmark

16

0.6

0.7

0.8

0.9

1.0

5 10 15 20 25

cores

sp
e
e
d
u
p
 (

e
ve

n
ts

/s
e
co

n
d
)

stc

Work stealing scheduler does not have a
notion of output favoured scheduling

Performance degrades
with parallelism

1. I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Zhunping Zhang, and Jim Sukha. 2015. On-the-Fly Pipeline
Parallelism. ACM Trans. Parallel Comput. 2, 3, Article 17 (September 2015), 42 pages

Conclusions

17

Slides
Repo

Hackage

https://ohua-dev.github.io/slides/haskell-19-stclang.pptx (.pdf for pdf)
https://github.com/ohua-dev/stc-lang
https://hackage.haskell.org/package/stc-lang

Monad
State ✅ Parallelism ❌ Composition ✅

FRP/Stream ProcessingMapReduceImplicit Pipeline-/Task-/Data-parallelism

Dataflow
State ✅ Parallelism ✅ Composition ❌

𝑆𝑡𝑎𝑡𝑒 𝑀𝑜𝑛𝑎𝑑
+ 𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤 𝑁𝑜𝑑𝑒 =

State Thread

𝑀𝑜𝑛𝑎𝑑 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
+ 𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 =

STCLang Monad/smap

• Glitch free by
default

• Straightforward

Without explicit
reducer

Leveraging
• Laziness
• ApplicativeDo

Fine grained
state structureNotion of local state

https://ohua-dev.github.io/slides/haskell-19-stclang.pptx
https://github.com/ohua-dev/stclang
https://hackage.haskell.org/stclan

The STC Monad

18

f
𝑠"

lift f
𝑠"

exec

[… , IVar 𝑠", …]

Abstracts over
source for 𝑠" with

𝐼𝑑𝑥GH

𝐼𝑑𝑥GH
[… , IVar 𝑠", …]

f
𝑠"IVar 𝑠" IVar 𝑠"

State Inputs State Outputs

No longer
depends on input

or >>=

Output from
previous run

of f Input to
next run

of f

Resolve source for
𝑠" in state arrays

For Sebastian: This is my backup slide to explain our monad construction. I like it,
but its also dense, so I relegated it as backup.

The Sequential Monad

19

f >>= g

g <*> f

Monad

Applicative

f >>> g

Arrow

⇒

⇒

⇒

• Convenient, familiar
• Inherently sequential

• Only task parallelism
• No flow from f to g

before the effects of f

• Effect composition
independent from data

• Does anyone use Arrows?
(You should though,
they’re cool)

State Thread Examples

20
1. Simon Marlow, Ryan Newton, and Simon Peyton Jones. 2011. A monad for deterministic parallelism. In Proceedings of

the 4th ACM symposium on Haskell (Haskell '11).

Microbenchmarks

21

1. For simplicities sake only includes the more favorable monad-par measurement (par2 in the paper)
2. NOINLINE version of the benchmark, as it is representative of what we want to test. See the paper for the complete

rational

0

5

10

0 5 10 15 20 25
cores

sp
ee

du
p

par stc

0

5

10

0 5 10 15 20 25
cores

sp
ee

du
p

par stc

0.0

2.5

5.0

7.5

10.0

0 5 10 15 20 25
cores

sp
ee

du
p

par stc1 2

Benchmarks

22
1. Marlow, Simon, Ryan Newton, and Simon Peyton Jones. "A monad for deterministic parallelism." ACM SIGPLAN

Notices. Vol. 46. No. 12. ACM, 2011.

0e+00

5e−09

1e−08

0 5 10 15 20 25
cores

sp
ee

du
p

par stc

0

5

10

15

0 5 10 15 20 25
cores

sp
ee

du
p

par stc

0

5

10

0 5 10 15 20 25
cores

sp
ee

du
p

par stc

Matrix Multiplication 1 Black-Scholes 1 Mandelbrot 1

Near-linear scaling
No slowdown

(with respect to par)

